
WINDOWS SHELL
FOR MICROSOFT WINDOWS 3.0

by

Greg McCain

December 5, 1991

Advisor: Charles Dana
Computer Science Department

School of Engineering
California Polytechnic State University

1991

TABLE OF CONTENTS

ABSTRACT .

HOW THIS DOCUMENT IS ORGANIZED

LIST OF FIGURES .

Section

Features of Windows Shell .

Command Line .

Aliasing .

Environment Variables .

Action Bar .

External Commands .

Shell Commands .

Design of Windows Shell .

Graphical Objects in the Windows Shell

8

Pertinent Data .

Painting The Display

Obtaining Standard I/O input

Marking Text .

Command History

Message Directory

The ACTNBAR Window

The WINSHELL Window

Logical Modules For Command Interpretation.

The Command Prompt Path

The Action Button Path

The ALIAS.C Module .

The INTERP.C Module

The Development Process

Appendix

23

ABSTRACT

This document discusses the purpose, features, and design of a command line shell for Microsoft
Windows 3.0, the Windows Shell. The Windows Shell allows users to launch both DOS and Windows
programs from a command line environment, as well as perform disk maintenance operations such as

copy, deleting, and moving files.
The Windows Shell is implemented in the Microsoft Windows 3.0 environment. The shell has

been tested on systems running Windows in VGA and EGA video modes. The Windows Shell uses
Windows 3.0 non-preemptive multitasking techniques to allow multiple instances of the Windows
Shell to run concurrently, as well as other programs in the Windows environment.

The Windows Shell introduces several new features to the typical command shell environment,
including interactive editing of Aliases and Environment variables, an "Action Bar" to quickly execute
a command, the ability to set "permanent" options in shell commands, and customizable fonts and
screen colors.

The purpose of the Windows Shell is to fill a gap in the Windows 3.0 environment. The original
environment provides a highly graphical user interface for executing programs and file management.
While this is great for naive users, the graphical interface can become cumbersome to experienced
users. The Windows Shell is intended for experienced users, providing quick manipulation of files and
directories, as well as executing Windows and DOS programs. The Windows Shell also includes some
extra graphical niceties that are discussed in the following section.

HOW THIS DOCUMENT IS ORGANIZED

This document is divided into three main sections. The first presents the Windows Shell as seen by
the user. It discusses the feature of Windows Shell, how to access them, and what they can do for a
user. The second section presents the Windows Shell as seen by the programmer. This includes a
discussion of the graphical objects seen in the Window Shell, as well as a discussion of how the

command interpretation works. The last section discusses the development process of the Windows
Shell. It describes the problems encountered in both design and implementation of the Windows Shell,

and any other noteworthy considerations that were involved in the development process.
The document also provides the specifications of the DLL External Commands interface in

Appendix A. The interface is a major consideration when developing external commands for use with
the Windows Shell.

LIST OF FIGURES

FIGURE

1

2

3

4

5

7

16

I. FEATURES OF WINDOWS SHELL

I.A. THE COMMAND LINE

figure 1

The Windows Shell provides a command line interface to the windows environment. The command
line is similar in appearance to a DOS shell, with the following exceptions:

- The Windows Shell prompt allows for text marking, cutting, and pasting.
- The Windows Shell offers the "Action Bar" seen on the left side of the shell (see figure 1.)
- The Windows Shell allows the user to configure the color and font used by each instance of

the shell.
- The Windows Shell recognizes the '&' character to run a windows program minimized.
- The Windows Shell expands partial file names entered on the command line into the entire

file name by pressing the tab key. If more than one file matches the partial name, the user
will be given a choice of files.

I.B. ALIASES
Windows Shell allows the user to define aliases. Aliases allow long or complex commands to be

abbreviated for quick access.

figure 2

Windows shell provides the Alias Editor (as seen above in figure 2) for quick viewing and editing
of aliases.

I.C. ENVIRONMENT VARIABLES

The Windows 3.0 environment provides environment variables similar to that of DOS and UNIX.
Unfortunately, the environment variables in the Windows Shell are not inherited by the programs it
executes. Each new program gets a copy of the environment that was recorded when windows was
started. However, the environment variables do effect the shell itself, which is useful for changing the
path or prompt.

figure 3

Windows Shell provides the Environment Editor (as seen above in figure 3) for quick viewing and
editing of environment variables.

I.D. ACTION BAR
The action bar is a column of eight buttons along the left side of the shell (see figure 1) It allows

users to execute a predefined command at the press of a button. The following window is used to
configure the action bar:

figure 4

The Button Configuration Window allows the users to define the text seen on the buttons and the
command that is carries out. The user can access text marked on the Windows Shell using the '='

character. The '=' character is replaced by a string containing the marked text when the command is
executed. This makes it easy for a user to mark a block of text and perform actions upon it, such as
deleting or editing files. For example, to have a button which will delete any marked files, use the

string:
del =
in a "button command" box, as seen in figure 4.

I.E. EXTERNAL COMMANDS
Most shells provide shell commands which are built into the shell itself. The Windows Shell

provides only the most basic shell commands, including: change directory (cd), make directory (md),
and remove directory (rd). The rest of the usual shell commands are implemented as "external
commands".

Each external command is a Windows 3.0 Dynamic Link Library (DLL). The Windows Shell uses
a Windows 3.0 DLL loading function to load and run external commands. Each external command
must provide a set of functions to execute the command, show an about box, and show an options box.

The windows shell provides the "external commands window" to view and configure external
commands (see figure 5).

figure 5

The options box allows the user to set "permanent" options on a command that will be invoked each
time the command is run. The about box allows the user to view an about box for the command which
could contain useful information on what the command does and how to use it.
The reason the "external commands" are implemented as DLL's is that it allows new commands to be
written without modification to the shell. Also, the format of the DLL is such that a normal DOS
shell program can easily be ported to run under the shell.

I.6. SHELL COMMANDS
The user accessible commands contained in Winshell, or Shell Commands, are as follows:
cd <dirname>
md <dirname>
rd <dirname>
<DRIVE> :
ps : Lists currently running processes.
min <task_name>: Minimizes program with caption matching task_name.
max <task_name>: Maximizes program with caption matching task_name.
kill <task_name>: Closes program with caption matching task_name.
exit

: Exits current Windows Shell.
exitwin

: Exits Windows.

II. DESIGN OF WINDOWS SHELL
The design of Windows Shell has been broken down into the many separate modules, both

graphical and logical. To simplify the explanation of the design, this section is divided into two main
parts. The first part will discuss the graphical object design of windows shell. That is, how the
individual windows and buttons are designed, how they function, and they the communicate with one
another. The second part of this section will discuss the modules used in command interpretation.
This section will involve a detailed trace of the flow of control for the interpretation of a command.

II.A. GRAPHICAL OBJECTS OF THE WINDOWS SHELL
The windows shell has been divided into three main graphical objects, as seen in figure 6. Each of

the objects is implemented in a separate C source file, and communicate with each other via Windows
messages. Although the "Main" window as seen in figure 6 is at the top of the hierarchy, controlling
the other two windows, this explanation will be more clear of it starts from the bottom.

figure 6

II.A.1 The WSTDIO Window
By far the most important window in the shell is the WStdio window. It is responsible for

supplying the primitives such as reading and writing characters to a standard I/O type device. To do
this in a windowing environment, is requires creating a "virtual" standard I/O display. This display is
represented by a data structure, who's main element is an array of characters which represent the
characters displayed on the screen. When characters are written to the WStdio window, they a first
copied into this character array, and then are actually displayed on the screen.

II.A.1.a Pertinent Data
To better understand the implementation of the WStdio window, let's look at the elements of the

Display data structure as defined by the WStdio window. The first feature is the array of characters
representing the display (This is referred to as the "LineBuf".) Second, are a set of elements used to
track the state of the display:

int iTopLine;
// Index of the current top line in the LineBuf
int iBottomLine;
// Index of the current bottom line in the

// LineBuf
int TotalLineCount;
// the current number of line in the LineBuf
int CurCharOffset;
// offset into LineBuff of current position

These first four elements are what control current state of LineBuff itself. LineBuff is an array of
characters, which is logically divided into fixed length lines. The actual number of lines available in
LineBuff is a constant at compile time, but is typically much larger than the number of lines that will
currently fit in the window on screen. (This surpluss of lines in memory is used as a scrollback buffer,
as will be discussed later.) The indices to the top and bottom lines are used because LineBuff is a
circular buffer. These indices always point to the portion of the LineBuff that is currently displayed on
the screen. The TotalLineCount variable is the absolute number of lines in LineBuff. CurCharOffset
is absolute position in LineBuff at which the next character to be displayed will be written.

The next set of elements is used when actually outputting lines to the screen. Their uses and
intentions are explained in the comments.

int nLinesOnScreen;

// in it's current size
int nCurLineOnScreen;
// the current line the cursor is on in window

// starting from 1 (NOT 0!)
int yChar,
// height in pixels of a line
int xCursorPos;
// distance (in pixels) from the left hand

// side of the screen that the cursor is at
When the user activates the scrollback feature by using the vertical scrollbar or the PAGE

UP/PAGE DOWN keys, these variables are initialized and used to track the positioning of the
scrollback:

BOOL
// True is window is in a scrolling back state
int
// index of the top line in the LineBuff

// during a scrollback
Another noteworthy element in the Display data structure is used to expedite the actual outputting

of lines on the screen.

int nUnpurgedLines,
// # of line waiting to be written to

// the screen
The WStdio window does not display a line of text immediately when it is received. If possible,

the window will wait until a predefined constant number of lines come in before it actually displays the
lines. This can dramatically increase the rate at which lines are displayed on the screen. The
nUnpurgedLines variable counts the number of lines waiting to be displayed.

Finally, there are elements used to track how the user has highlighted any text in the WStdio
window:

WORD wSelectState;
RECT rectInversion;
The wSelectState variable can be in three states: one indicating there is no highlighted rectangle,

when all bits are turned off. The second, SS_SELECTING, indicates the user is currently marking a
rectangle. The third, SS_RECTSELECTED, indicates that a rectangle is currently highlighted. When
in third state, the rectInversion variable will hold the coordinates of the highlighted rectangle.

II.A.1.b Painting The Display
When a message is sent to the WStdio window to write a line to the display, it's first job is to copy that

line to the line buffer. It then invalidates the region of the window that will be effected by the new
text. Having done this, the function is essentially done. The job of actually writing the text to the
screen comes later, in response to a Windows WM_PAINT message. To understand why it is
implemented this way, one must understand the concept of the MS Windows WM_PAINT message.
Windows dictates that all screen I/O should be done in response to a WM_PAINT message. The
message informs a window that it needs to repaint a portion of it's client area, and supplies the window
with the coordinates of a rectangle it needs to repaint. Thus upon receiving this message, the WStdio
window calculates what lines need to be painted, and paints them. Back when a client module
requested the WStdio window to display a line, the WStdio window only had to copy the line into it's
internal Linebuff, and invalidate the portion of the window that will be effected by the new line. By
invalidating a portion of the window, Windows will generate a WM_PAINT message, and the window
will be repainted, reflecting the new line to be displayed.
II.A.1.c Obtaining Standard I/O Input

Perhaps the most interesting feature in the implementation of the WStdio window is how it obtains
input from the user. To provide a function like getstr(), which does not return until the user presses the
ENTER key, the Windows message loop had to be placed inside the getstr() command. This allows
other processes to run while the WStdio window is waiting for input.

When a client module sends a DM_GETS message to get a string from the WStdio window, the
WStdio window calls the DisplayGetStr() function. This function first positions the caret at the
appropriate position, and then falls into a message loop. Inside this message loop, the function
monitors the incoming messages looking for the ENTER key to be pressed, in which case it will fall
out of the loop and return the text that was entered. The function also monitors the incoming messages
for keys like the arrow keys, in which case it will invoke the command history, and for WM_CLOSE
message. If a WM_CLOSE message comes in, the DisplayGetStr function exits the message loop and
returns a value indicating that the function failed.

With this method of implementing the message loop in the input function, the client modules need
not use a message loop. The main module, WINSHELL.C, in fact does not use a message loop.
Instead, it falls into a loop that might be expected out of a UNIX type command, in which it displays a
command prompt, gets an input string, interprets it, and executes the appropriate action. It does not
use a message loop at all, like most other Windows WinMain functions have to do. But this is an aside
and will be cover more in the section on the WINSHELL.C module.

In order to obtain input from the user, the WStdio window uses a Windows edit control. When the
user sees a prompt at which he or she can type, that prompt is actually inside a separate edit control,
and not in the WStdio window itself. The edit control is always positioned at the end of the last
character entered, much as a caret would be. This way, however, leaves much of the work of obtaining
key-presses and displaying characters to the edit control. It also helps provide the standard controls a
user might expect from an input prompt. Such things as marking text and replacing text will remain
consistent with other edit controls, and in future versions of Windows.

II.A.1.d Marking Text With The Mouse
The job of marking text on the display is quite simple. The WStdio window responds to a

WM_LBUTTONDOWN message (indicating the left mouse button is being pressed,) by obtaining a
mouse capture. This forces Windows to send all subsequent mouse message to the window obtaining
the capture. While in this state, the WStdio window then responds to all WM_MOUSEMOVE
messages by inverting a rectangle between the position where the mouse was originally pressed and the
current position. When the left mouse button is released, the capture is also released, and the rectangle
is left highlighted.

The portion of highlighted text can now be accessed by both the WStdio window itself, and by
client windows via a DM_GETMARKEDTEXT message. The function GetMarkedText(), in the

wstdio.c module, is responsible for determining what characters are actually marked and copying them
to a buffer. This is no simple task when proportionally spaced fonts are in use. The function must
navigate LineBuff and determine the actual length in pixels of each character in the buffer. It then
compares this to coordinates that are marked in the screen, and can determine what characters are
actually marked.

II.A.1.e Command History
The WStdio is also responsible for providing a command history. Whenever the user enters a

command at the command prompt, the WStdio window records the command entered with the
CommandHistory() function. This function manages a simple queue of a constant size. When a user
enters a command, it is added at the end of the queue, and the first item in the queue is discarded if
there are more than the constant limit of items in the queue. When the user presses the up and down
arrow keys, the WStdio window responds by displaying items from this queue on the command line.

II.A.1.f Wstdio Message Directory
The following is a list of messages that the WStdio window provides for client modules:

- Writes a string to the display.

- Gets a string from the display.

- Clears the Wstdio window.

- Sets the font the Wstdio window will use.

DM_GETNUMCOLUMNS - Returns the approximate number of columns on the display. A
column is space enough for about 12 of the widest characters in
the current font, and a trailing tab. This feature essentially
indicates the number of file names that can be displayed on one
line.

DM_GETMARKEDTEXT - Returns a global handle to memory block containing marked
text. This memory must be freed by the user

DM_SETMORE - Turns the more feature on and off. When this feature is turned on, the
WStdio will automatically display a ----more---- at the bottom of the
screen after the last number of lines displayed has filled up the screen.
The more feature is automatically turned off when after DM_GETS
message is sent.

II.A.2 The ACTNBAR Window
The actnbar window provides the column of user configurable push buttons along the left hand side

of the Windows Shell. The ACTNBAR window is actually a rectangular window surrounding the set
of push buttons. Associated with each push button is a caption and a command. The caption is the text
that is displayed in the button on the screen. The command is the command string which will be
invoked when the button is pressed.

When the ACTNBAR window is created, it creates it's push button children and initializes them to
defaults saved in the WINSHELL.INI configuration file. It's job thereafter is to report to it's parent
window whenever one of it's buttons has been pushed, passing the parent window the command string
to be executed.

This is accomplished using the standard Windows WM_COMMAND message. This message is
sent to the ACTNBAR window whenever one of it's children is pressed. The ACTNBAR window then
sends this same message to the parent, and indicates what function to perform by setting it's own
caption text the command text assocaiated with the button. Thus when the parent receives the
WM_COMMAND from the ACTNBAR window, it reads caption text of the ACTNBAR window, and
executes the command contained therein.

Note that this logical command path is different from that of the other command interpretation
path. A command executed in response to the ACTNBAR being pressed is interpreted and executed in
response to the WM_COMMAND message, and is not obtained via the command interpretation loop in
the WinMain function. This is discussed more in section II.B.2.

Also contained inside the ACTNBAR.C module is action button configuration dialog box. This
allows users to configure both the caption and command of each action button.

II.A.3 The WINSHELL Window
This window is the main window of the application, and controls the other windows as seen in

figure 6. The graphical job of this window is quite simple. It's job is to manage that size and position
of the other two windows, namely the WSTDIO window and the ACTNBAR window. These windows
are both children of the WINSHELL window, and reside inside the client are of the WINSHELL
window.

Apart from this, the WINSHELL also provides the menu bar as seen at the top of the window. It
must respond to menu messages and execute the appropriate functions. These functions include
changing the font in the WSTDIO window, changing the colors of the Windows Shell, and popping up
the various configuration dialog boxes. These duties mostly involve sending a single message to the
appropriate window to perform the task. In this way, the WINSHELL window serves more as a
message router for it's children than anything else.

However, if this seems to simple, that because it is. This is only a discussion of the graphically
oriented tasks the WINSHELL window must perform. It's main task, that of command interpretation,
is discussed in the next section.

II.B LOGICAL MODULES FOR COMMAND INTERPRETATION

This section discusses the modules involved in command interpretation. Now that the relationship
of the 3 main windows has been defined, the matter of understanding command interpretation will be
much easier. First let's look at the design of the command interpreter, as seen in figure 7.

figure 7

The flow of control in figure 7 moves left to right. The diamond shaped modules indicate modules
which are returning user input. The circular modules perform some logical operation on the input data,
and the square boxes will be the end result of the command.

There exist two paths in which a command can be executed by the shell. The first is by the user
entering a command at the command prompt. The second, is the user pressing an action button. The
former is accomplished by looping for user input, interpreting it, and executing it; the latter is done

only in response to a user pressing an action button.

II.B.1 The Command Prompt Path

Command interpretation begins in the WINSHELL.C module. This module contains the WinMain
function, which is the entry point of a Windows application. After performing it's initializations and
creating it's child windows, the WINSHELL.C module falls into the command interpretation loop as
follows:

do

{
 DisplayPrompt (hwndDisplay);

 // exit if display says to
 if (dgets (hwndDisplay, szCmdLine, MAX_COMMAND_LENGTH)== -1)
 break;

 ExpandAliasString (szCmdLine, MAX_COMMAND_LENGTH);

 iInterp = InterpretCommand (hwndWinShell, hwndDisplay, szCmdLine);
} while (bContinue && iInterp != -1);
The first function in the loop displays the command prompt on the WStdio window. The next job

is to obtain a line of text from the user, which is accomplished by the dgets() macro. Note that if
dgets() returns -1, it means the user has closed the window, and the loop must be exited. After the user
input has been obtained, the input is passed to the ExpandAliasString() function in the ALIAS.C
module, which will expand any aliases found in the string. Finally, the string is passed to the
InterpretCommand function in the INTERP.C module. It is in this module that the string is parsed and
executed.

Note that commands retrieved from the command line are not given a chance to expand the marked
text symbol by using the WSTDIO.C module. The marked text symbol is provided so that the symbol
in the command string is replaced by the text marked in the WStdio window. Although this would be
a desirable alternative, a minor design flaw stopped me from implementing it.

II.B.2 The Action Button Command Path

 The ACTNBAR.C module can instigate a command by sending a message to the WINSHELL
window. The WINSHELL responds by executing the command using the flow of control as seen in
figure 7. The following code is executed in response to such a message:

GetWindowText (LOWORD (lParam), szCmdLine, MAX_COMMAND_LENGTH);

ExpandAliasString (szCmdLine, MAX_COMMAND_LENGTH);
ExpandMarkedText (szCmdLine, MAX_COMMAND_LENGTH);
InterpretCommand (hwndWinShell, NULL, szCmdLine);
As you can see, the code is very similar to that used in the command interpretation loop in the

previous section. The only difference is that commands executed in response to the ACTNBAR
module get to use the ExapandMarkedText() function, which expand the marked text symbol into the
text currently marked on the WStdio window. Also, the command executed in response to the

ACTNBAR module are passed a WStdio window handle of NULL. This means that these function
will not be able to output any data to the WStdio window.

II.B.3 The ALIAS.C Module

The ALIAS.C module provides aliases expansion for command strings. It is implemented as a
Windows DLL, which provides the following advantages. For all instances of the Windows Shell
running, they all share a common ALIAS module. This means that if an alias changed in one shell, it
is changed for all shells. This methods also expedites the loading process of Windows Shell, because
the default aliases only have to be read from disk once, for the first module.

The implementation of the ALIAS module is quite simple. It maintains a dynamically resizable
array of elements. Each element contains an alias name and an alias value. The module provides a
dialog box for adding and deleting aliases, and the ExpandAliasString() function, which takes a string
and expands any aliases within it.

II.B.4 The INTERP.C Module

The third and perhaps most important module used in command interpretation is the INTERP.C
module. This module is responsible for parsing a command line, determining what type of command it
is, and executing the command accordingly. There are three types of commands that the module must
discriminate between.

The first type of command the INTERP module looks for are shell commands. These are
commands who's code is kept inside the Window Shell. This is accomplished by a large switch
statement that checks if the requested command is amongst those known to be external commands. If
INTERP determines that command is a shell command, it merely has to call the function associated
with the shell command. All shell commands are contained in the COMMANDS.C module. These
commands are so trivial they will not be discussed.

The second type of command the INTERP module looks for are external commands. These
commands are implemented as Windows DLLs. The INTERP function searches the default directory
for files who's names match the specified command name and ending with the .WS extension. If a
corresponding external command file is found, the DLL is loaded and control is passed to it. The
specifications for an external command are outline in appendix A.

The third type of command the INTERP module looks for are executable files. Windows provides
the WinExec() function which performs this function. However, the WinExec function only searches
for executable files with and extension of .EXE. DOS on the other hand, allows a different type of
executable file to end with the .COM extension. Also, Windows provides a DOS shell configuration
file which can also be executed, who's extension is .PIF. In order all these types of files to be
executed, the INTERP module first gives the WinExec function a crack at executing it. If this fails,
INTERP then searches the PATH for a file who's name matches the command name and ends in either
a .COM or a .PIF. If either of these are found, an explicit file name and path is created and passed to
the WinExec function, which will then execute the appropriate files.

If none of the above types of commands are found to match the specified command, an "unknown
command" message is displayed.

III. DEVELOPMENT PROCESS
This section discusses some of the problems and considerations that I ran into while designing and

implementing the Windows Shell. On a general note, it seems that many of the major design issues I
originally set out to implement worked quite well. From the onset, I intended to create a Windows
application that did not have a message loop in WinMain function. I wanted the main module worry

more about the matters of command interpretation than windowing. The message loop was to be
hidden in the screen I/O functions, which is how it is now implemented. Also, the idea of having
external commands implemented as DLLs worked out great. I really had no idea if either of these
ideas were feasible when I started.

User Feedback
So far I have received feedback from on;y one person. I received a call from a software tester in

Pennsylvania, who had downloaded the Windows Shell from a local BBS. He said that he really liked
the product, and commented that I should consider going shareware with the it. Furthermore he had
the following recommendations for the Windows Shell:

-User loadable alias files, supporting multiple loads of different files
- Allow more variables to be user configurable, such as the scrollback buffer size.

Problems Encountered
The remainder of this section will be organized in a problem-solution format. I will first present a

problem or consideration, and then discuss how it was solved or overlooked.

P - As mentioned in section II.B.1, commands entered at the command line aren't given a chance
to expand the marked text symbol into text that is actually marked on the WStdio window. I had
originally intended to provide this feature, but the implementation in the WStdio window prevented it.
The problem lies in that after a command is entered by the user, the ENTER key immediately
generates a newline character. When a newline is output to the WStdio window, the marked text is
automatically un-marked. Thus by the time the command is being interpreted, any marked text is no
longer valid. The Action Bar does not have this problem because it does not generate a newline
character when pressed.
S - The solution for this problem was to disallow marked text expansion on the command line. While
this is more or less avoiding the problem, I have not found an acceptable way to rectify it.

P - The Microsoft C functions for manipulating ENVIRONMENT variables do not work in a Windows
program.
S - The solution was to get a pointer to the environment area, and do all ENVIRONMENT
manipulation functions by hand. This was a messy job, but the only way I found to get it to work.

P - In Windows, the ENVIRONMENT of the parent is not inherited by the programs is spawns. This
has made the ENVIRONMENT editor almost useless.
S - There is nothing that can be done for this, except to not use Windows.

P - The speed of I/O to the display was too slow. For example, as lines were output from an LS
command, the rate at which lines were displayed was very slow. This is of course do to the graphical
nature of displaying and scrolling text.
S - The solution was to buffer the lines as they came in, and to output them in bursts. This made the
code considerably more difficult to understand, but the end result was highly desirable. I found that by
just buffering every other line, screen I/O was greatly increased.

P - Use of "strtok" C library function is dangerous. Because I am lexically analyzing a command line
to determine what
to execute, what flags to set, etc, I intended to use strtok. However, the C
library version is not compatible with Windows, because it allocates memory
in an incompatible way. So I decided I would write my own.
However, I realized that the way strtok is used will not work in a multi tasking

environment. Strtok "remembers" the last parameter you gave it, which
allows you to call it successively to get the next tokens. But with different
programs using strtok simultaneously, it will get garbled.
S - I considered two possible solutions for this problem. The first was
to redesign my strtok function to always require the string to be parsed as
a parameter. The calling routine would have to supply two buffers, one holding the source string, the
second holding a buffer in which strtok could do it's work. This however, would be quite cumbersome
for the client using strtok. The second solution is to carefully organize the use of strtok so that no two
modules would ever conflict. I chose to go with the latter, since it seems to work and required the least
amount of change.

APPENDIX A. THE EXTERNAL COMMANDS DLL INTERFACE

OVERVIEW

associated files in the GENERIC directory provide a template for creating a new External Command.

your DLL to be completely reentrant, no variable can be stored in the data segment. That is, don't
declare variables outside of a function, and no static variables inside a function. The reason for this is
that each invocation of a DLL function uses that same data segment. If a DLL function was called
reentrantly, static variables would be overwritten. Thus, if a DLL requires more data than will fit on
the stack, use dynamic allocation.

REQUIREMENTS

Each DLL must provide the following 3 functions for use by Windows Shell:

int FAR PASCAL ModuleProc (HWND hwndDisplay, int argc, LPSTR argv[]);
@ ORDINAL 3
hwndDisplay - Window handle of STDIO Display to use for I/O.
argc - Number of command line arguments.
argv - Array of pointers to command line arguments. The first pointer always points to the

name of the DLL.
This function is called to let the DLL do the function which it is providing. For example, if this were a

DLL providing a file deletion function, the DLL would perform the deletion at this
time.

int FAR PASCAL ShowOptions (HWND hwndParent);
@ ORDINAL 4
hwndDisplay - Window handle of STDIO Display to use for I/O or as parent.
This function is called to tell the DLL to show it's options box. The DLL should display a window

which allows the user to set options in the DLL.

int FAR PASCAL ShowAbout (HWND hwndParent);
@ ORDINAL 5
hwndDisplay - Window handle of STDIO Display to use for I/O or as parent.
This function is called to tell the DLL to show it's about box. The DLL should display an about

window at this time.

NOTE - It is essential that the DLL export these functions at the specified ordinal value in it's .DEF
file. Otherwise, The Windows Shell will not properly access the DLL.

USING THE DISPLAY
The header file 'wstdio.h' has been provided for outputing lines and other function to the display. The
most common of these is dputs(), which you can use to output a line to the display. See the header file
for the description of the rest of the functions.

UTILITY FUNCTIONS
The 'wslib.dll' provides several useful functions for parsing command lines, and yielding to other
applications. It is extremely important that you use the YieldToOthers() function your code sits in a
tight loop for an extended length of time. See the header file 'wslib.h' for a list of useful functions.

